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electrode
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The bubbly two-phase flow and electric current density distribution along a single,
vertical, gas-evolving electrode are modelled and the results of a boundary layer
analysis are presented. Existing empirical models for particle transport in sheared and
sedimenting suspensions are adopted for the bubble mixture to close the two-phase
model. Ionic species concentrations are shown to be essentially homogeneous as
the mixing effect of the bubble suspension usually is much larger than dispersion by
molecular diffusion even at laminar flow conditions. The non-uniformity of the bubble
distribution along the electrode results in a non-uniform current density distribution,
which agrees well with existing experimental findings in the literature.

1. Introduction
Gas-evolving electrodes frequently occur in industrial applications of electrochem-

ical processes, as well as increasingly being the subject of basic research in chemical
engineering. An industrial example is the chlorate process where sodium chlorate is
produced under the development of hydrogen and oxygen gas. Mostly, an electrode
and its counter electrode are positioned vertically, i.e. with the largest reactive surface
facing the horizontal direction. The evolved gas is thus free to move-upwards so as
not to accumulate on any of the electrodes. Nevertheless, the presence of gas, often in
the form of small bubbles, and its motion have great impact on the performance of
the electrode. A description of the phenomena involved, both from an electrochemical
and a fluid dynamical point of view, is given below.

A general description of gas-evolving electrodes, and the state of the art of modelling
such systems, is given by Vogt (1983). Of all the various regimes of gas evolution
we are here interested in cases of nucleate gas evolution. This means that if the
supersaturation of dissolved gas in the liquid adjacent to the electrode surface is
sufficiently high, gas bubbles will form at predetermined nucleation sites on the
surface. The bubbles grow as a result of the supply of dissolved gas from the
electrolyte. In the nucleation regime, the gas bubbles leave their nucleation sites when
they reach a size at which buoyancy and shear forces of the liquid are large enough
to exceed the interfacial tension force by which the bubbles adhere.

From a hydrodynamic point of view the problem essentially is that of describing
the two-phase flow of a bubble suspension. Experimental data, describing elements
of the two-phase flow in a small electrolytic cell developing hydrogen bubbles, are
given by e.g. Boissonneau & Byrne (2000). Such systems often develop turbulent flow
but there are also laminar regimes of practical interest. Of particular interest here are
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the mechanisms for phase distribution in laminar flow. In the case of small hydrogen
bubbles the bubble slip Reynolds number is, at most, of order unity, and the channel
Reynolds number for flow in the narrow gap of an electrolyzer may well be below
that of transition to turbulence for single-phase flow. Dispersed phases under laminar
flow conditions develop a ‘pseudo-turbulence’ originating in the chaotic motion of
the hydrodynamically interacting multi-body system. This occurs in shear flows as
well as in essentially stagnant but sedimenting systems. Together with flow-induced
migration forces on the dispersed phase, the pseudo-turbulence dispersal of matter
determines the phase distribution. Empirical models of these effects are discussed in
more detail in the formulation of the present problem, see § 2.1 below.

The presence of bubbles also decreases the effective electric conductivity of the
electrolyte by reducing the cross-sectional area of pure electrolyte available for current
transport. The resulting distribution of current density along the electrodes, see
figure 1, is of great importance in industrial applications. Experimental findings are
summarized by Vogt (1983), including e.g. those of Hine & Murakami (1980), who
measure the current density for forced and natural circulation in an electrolytic cell.
Due to the enrichment of bubbles along the channel, the current density decreases
rapidly from the bottom inlet to the outlet. Models in the electrochemical literature,
such as in the frequently referenced work by Tobias (1959), usually assume plug flow
and a uniform void fraction in each horizontal section of the narrow gap between
two electrodes, that varies in the vertical direction. Vogt (1981) concludes that a
non-uniform bubble distribution at each horizontal section probably is necessary to
correctly model the resistivity of the electrolytic cell.

The interelectrode potential drop, and hence the current density, are also strongly
influenced by the electrode overpotential, which stems from energy barriers in the
charge transfer mechanisms of the electrode kinetics (see e.g. Byrne et al. 1999). The
cumulative effect of varying electrode overpotential and the increased resistance of
bubbly electrolytes on the current distribution seem to be sparsely investigated in the
literature. Simplified, one-dimensional theories are given by Funk & Thorpe (1969),
Rousar (1969) and Rousar et al. (1977).

Mass transfer of other non-gaseous species, the efficiency of which is important
to the electrochemical performance of the electrode, increases with increasing current
density, although the bubbles cover an increasing part of the electrode surface. State
of the art models in the electrochemical literature of mass transfer due to the global
convective flow caused by the buoyant bubble–liquid mixture near the electrode are
usually based on the mass transfer equation for natural turbulent convection at plane
walls. The pseudo-turbulence, induced by the dispersed phase, is also present in the
continuous phase and may drastically influence mass transfer properties of dissolved
molecular species even for overall laminar flow cases.

In the present paper we extend previous work on gas-evolving electrodes, which
generally assume one-dimensional flow, by using the state of the art, dispersed two-
phase flow modelling for a mono-sized suspension of spherical bubbles. The geometry
is simplified in that we only consider a single vertical electrode along which a buoyant
boundary layer of bubbles appears. The flow is assumed to be laminar. Faraday’s law
couples the production of gas at the electrode to the electric current density which is
dependent on the overpotential at the electrode–electrolyte interface. Determination
of the overpotential requires consideration of potential drop and charge transport in
the bubbly electrolyte. Mass transport of dissolved species due to pseudo-turbulence
is shown to effectively keep the species concentrations close to their bulk values.
Computed current density distributions, for the single electrode considered here,
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Figure 1. Sketch of geometry and basic phenomena.

compare well with the experiments of Hine & Murakami (1980) performed in a
complete cell with natural circulation.

2. Formulation
We consider an infinite electrolyte in a two-dimensional geometry with a single

vertical electrode of length L, through which flows a current density i(z) as sketched
in figure 1. The counter electrode is thus assumed to be sufficiently far away so as
to be of negligible influence on the flow. The prototype system chosen is a binary
alkaline solution of e.g. water and caustic soda with nickel as the electrode material, for
which the hydrogen evolution mechanism is relatively well established, see Lukowzew,
Lewina & Frumkin (1939). Our task is to determine the current density distribution
along the electrode, effectuated by the non-uniform conductivity of the buoyant
mixture of electrolyte and evolved gas and accounting for the variable charge transfer
overpotential. The resistivity of the electrode is assumed infinitely small such that
electric potential variation in the electrode is negligible compared to the overpotential
and the potential drop in the bubbly electrolyte. To complete the formulation for
the full fluid dynamic two-phase flow problem, § 2.1, here coupled to the ionic mass
transfer in the electrolyte, § 2.2, details of electrode kinetics for hydrogen production,
which is only briefly explained here in § 2.2 are given by e.g. Bockris & Reddy (1977,
pp. 1231–1251), Vetter (1967, pp. 105–157, 517–536), or Lukowzew et al. (1939) and,
specifically for this formulation, by Dahlkild (2000).

2.1. Two-phase flow

The evolved hydrogen is assumed to form a dispersed gaseous phase of bubbles
within the continuous liquid electrolyte. To model the flow of this mixture along the
electrode, we use the ‘mixture’ formulation, or ‘diffusion’ model of two-phase laminar
flow (see e.g. Ishii 1975). This assumes that the liquid–bubble mixture effectively
behaves as a Newtonian fluid, with a density and an effective viscosity relative to the
liquid phase depending only on the volume fraction of bubbles, α. The motion of the
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dispersed phase relative to the mixture, or the ‘diffusion’ velocity, is given separately
by a constitutive law based on empirical relations described later in this section. This
kind of simplified theory of two-phase flow is successfully applied to problems of
sedimenting suspensions of particles, as e.g. illustrated by Acrivos & Herbolzheimer
(1979). The theory is most suitable for cases when the diffusion velocity is small in
comparison to the mixture velocity and inertial effects on the relative motion of the
phases are negligible. This is certainly not the case for all bubbly flows, but may
be applicable here essentially since the bubbles are small. The diameter of departing
electrolytically produced hydrogen bubbles is generally in the range of 50–100µm (see
e.g. Vogt 1983). In water, and for a bubble diameter of 50µm, the bubble Reynolds
number is 0.1 based on the terminal velocity for a single bubble in a quiscent fluid.

The density of the mixture is

ρ = αρD + (1− α)ρC (2.1)

where subscripts C and D denote the densities of the continuous and dispersed
phases, respectively. Let j = (jy, jz) and q = (v, w) denote volume-averaged and
mass-averaged flux densities of the mixture, given by

j = jD + jC, ρq = ρDjD + ρCjC, jD = αvD, jC = (1− α)vC, (2.2a–d )

where vD and vC are the separate velocities of the two phases. Furthermore, let jR
denote the relative volume flux density of the dispersed phase, defined by

jR = jD − αj . (2.3)

It then follows that j and q are related by

j = q − ε

1 + εα
jR, ε = (ρD − ρC)/ρC. (2.4a,b)

In our case ρD � ρC , so that we may set ε = −1. In addition, variations in ionic
species concentrations are assumed to be small so that ρC effectively can be considered
as constant throughout the electrolyte. For the relative viscosity we use

µ

µC
= µe(α) =

1

1− α (2.5)

which follows from an empirical relation proposed by Ishii & Zuber (1979) in the limit
of vanishing gas viscosity and a maximum packing limit of the bubbles at a volume
fraction of unity. The latter assumption could certainly be questioned, especially since
in other aspects we will model the bubbles like solid particles, for which the packing
limit is lower. However, the behaviour of a bubble foam is probably an open question
even if the bubbles behave much like particles at lower concentrations. As we put less
effort into the very detailed modelling here and concentrate on physical principles
and major effects, (2.5) will serve the purpose of this particular study. It is worth
noting that values of α ' 1 do not appear in this investigation.

The governing equations of the two-phase flow, i.e. conservation of mixture and
disperse-phase volume and conservation of mixture momentum, are respectively at
ε = −1 given by

∇ · j = 0, (2.6)

∇ · jD = ∇ · (αj) + ∇ · jR = 0, (2.7)

ρC(1− α)q · ∇q = −∇P + ρCgαẑ + (∇ · [µ(α)(∇q + ∇qT )]− ∇[ 2
3
µ(α)∇ · q]), (2.8)

where P = p+ ρCgz is the reduced pressure.
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Boundary conditions on the electrode include a no-slip condition for the tangential
velocity component of the mixture, and a zero normal velocity component of the
continuous phase. The former condition is an assumption which in general does not
imply no-slip conditions for any of the phases separately when using the mixture
model. In our case though, as we neglect the density of the disperse phase, the no-slip
condition will hold for the continuous phase. Consistent with our assumption that
ε = −1, we neglect the net mass flux of the continuous phase at the boundary due
to the gas-producing chemical reactions. The normal component of the volume flux
density in the dispersed phase is prescribed by the local volumetric production rate
of gas per unit area at the electrode, jH2

(z), which is determined by the local current
density through Faraday’s law. If all the hydrogen evolved by the electrochemical
reaction is assumed to transform into gaseous phase in a layer of negligible thickness
adjacent to the electrode, the local volumetric production rate of gas per unit area is

jH2
(z) =

1

2

RT
pH2

i(z)

F
, (2.9)

where i(z) is the current density at the electrode wall, pH2
the gas pressure, T the

temperature, R the universal gas constant and F the Faraday constant. The factor 1/2
in (2.9) indicates the fact that two electrons must be transferred for the production of
each hydrogen molecule. (Average values of the gas production rate and the current
density over the electrode surface are denoted by jH2m

and im respectively.) At large
distance from the electrode, the bubble volume fraction and the vertical flow velocity
both approach zero.

In order to formulate the law for the relative motion, we need to specify some prop-
erties of the disperse phase and characterize its behaviour. The detachment of bubbles
from the wall are assumed to occur at a constant bubble size and at a continuous rate,
as determined by the local current density. Changes in bubble size, due to varying hy-
drostatic pressure, may be neglected if ρCgL/patm � 1, where L is the electrode length
and patm is the atmospheric pressure. Coalescense of bubbles that are brought in con-
tact through the motion of surrounding liquid is not accounted for either. This seems
to be an appropriate simplification for an alkaline solution containing small hydrogen
bubbles (see Janssen 1978). A physical explanation as to why coalescence is hindered
may be the existence of electrical repulsive forces acting between bubbles in an elec-
trolyte, as discussed by Marrucci & Nicodemo (1967). Also, impurities may collect on
the surface of small bubbles causing it to become rigid. Thus, effects of polydisper-
sivity are not studied here. Finally, surface tension, T, is assumed sufficiently large,
compared to deforming viscous and pressure forces, to prevent bubbles from attaining
anything but a spherical shape, i.e. µCγ̇a/T� 1, where γ̇ is the shear rate and a the
bubble radius. Thus, the bubbles behave in most aspects similarly to a suspension of
light solid spherical particles. Therefore, as a first approximation, we adopt transport
mechanisms known to exist for particles at low particle Reynolds numbers along with
laminar flow of the mixture as a whole. In the range of bubble sizes considered here,
small or moderate values of the bubble Reynolds number, as suitably defined on vari-
ables of the local flow field relative to the bubble, are to be expected. The constitutive
law of the relative motion applied here is thus an extension of a model applied by
Nir & Acrivos (1990) for particles sedimenting on an inclined surface, and given by

jR = ẑUsαf(α)− a2γ̇β(α)∇α− aUsf(α)D∇α; D =

(
D⊥ 0
0 D‖

)
, (2.10)

where Us = ga2/3νC and γ̇ is the magnitude of the shear rate.



254 A. A. Dahlkild

The first term on the right-hand side of (2.10) is the dispersed-phase flux due to
the hindered terminal velocity of bubbles rising in a quiscent mixture. A common
approach (see e.g. Ishii & Zuber 1979) assumes the bubbles to rise with the velocity
of a single bubble in a fluid as modified by the effective viscosity and density of the
mixture, whereby f(α) = (1−α)/µe(α). In fact, the magnitude of this vertical transport
will turn out to be small compared to the convective vertical transport and will be
neglected in the final analysis.

The transport mechanism, represented by the second term of (2.10), is known
as shear- induced hydrodynamic diffusion, and is provided by mutual collisions of
the bubbles (or close interactions) as they are convected in the shear flow, set up
by the buoyant bubble mixture close to the electrode. As shown by Leighton &
Acrivos (1987a, b) for small particle Reynolds numbers the diffusivity scales with the
square of the particle size times the magnitude of the shear rate, γ̇. The function
β(α) = 1

3
α2(1 + 0.5e8.8α) is given by Chapman & Leighton (1991) as an empirical

approximation for the non-dimensional effective diffusion coefficient. Similar models
have been sucessfully applied to resuspension phenomena of particles settling due to
gravity (see e.g. Schaflinger 1996). Although analogous mechanisms for bubbles have
yet to be demonstrated it is our hypothesis here that similar phenomena appear in a
sheared bubble–liquid mixture.

The last term on the right-hand side of (2.10) is also a diffusive flux, but not
accounted for by Nir & Acrivos (1990), known as hydrodynamic self-diffusion of
a settling suspension in the context of particles. Its origin is the irregular paths of
hydrodynamically interacting, neighbouring bubbles as they rise in the suspension.
As shown and quantified by Ham & Homsy (1988) and Nicolai et al. (1995), by
following marked particles of settling suspensions of identical spheres, the diffusivity
scales with the particle size times the average settling speed. D‖ ∼ 8 and D⊥ ∼ 1 are
approximately constant and independent of α, as reported by Nicolai et al. (1995).
Although this coefficient of self-diffusion is not identical to the collective local gradient
diffusivity, for which no detailed results are reported, they appear to be of the same
order of magnitude (see Davis & Hassen 1988). For the most part the hydrodynamic
self-diffusion is, in our case, smaller than the shear-induced diffusion, but becomes of
critical importance in the present model around locations in the flow field where the
shear rate is zero.

Most likely, there are also several other dispersion mechanisms for bubbles in
laminar flow not accounted for here. Migration phenomena for single particles, like
the Segré–Silberberg effect of inertia-induced lateral migration of a neutrally buoyant
sphere in shear flow, as treated also by e.g. Ho & Leal (1974), and the side forces
on a sedimenting particle in a shear flow, as described by Saffman (1965) and Drew
& Lahey (1987), are all likely to have counterparts for small bubbles. Migration
phenomena of this type, for bubbles in laminar flow, have been experimentally
investigated by e.g. Kashinsky, Timkin & Cartellier (1993) and Nakoryakov et al.
(1996) and have also been treated theoretically by Achard & Cartellier (1985), Drew
(1990), Antal, Lahey & Flaherty (1991) and Wedin (1999). However, these issues will
also not be considered here.

2.2. Ionic species transport

The liquid phase is assumed to consist of a dilute solution of fully ionized caustic
soda in water. This can be characterized as a binary electrolyte with no homoge-
neous reactions taking place in the electrolyte bulk. In alkaline solutions, the overall
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heterogeneous reaction for hydrogen evolution is

2H2O + 2e− → H2 + 2OH−. (2.11)

The evolution of hydrogen is thus accompanied by the production of hydroxide ions
at the electrode. Due to the electroneutrality condition the molar densities of the
natrium and hydroxide ions, [Na+] and [OH−], will be equal and are denoted by c
in what follows. The current density is determined by the net molar flux densities of
the positive and negative ions in the electrolyte

i = F(N+ −N−) = −g(α)(σC∇φ+ F(D+ − D−)∇c), (2.12)

where φ is the electric field potential and where

g(α) = (1− α)3/2 (2.13)

accounts for the decreased effective electrical conductivity of the bubbly electrolyte
and is frequently referred to in the electrochemical literature as the Bruggeman
relation, Bruggeman (1935). D+ and D− are the diffusivities of the ions in the pure
electrolyte with the corresponding conductivity

σC =
F2

RT (D+ + D−)c. (2.14)

For a binary solution it is also helpful to consider another linear combination of the
species flux densities:

N =
D−N+ + D+N−

D+ + D−
= cjC − g(α)D∇c− a2γ̇βs(α)∇c. (2.15)

The first term is merely the convection of ions in the liquid phase. The second
term is the apparent molecular diffusion of the binary electrolyte where D =
2D+D−/(D+ + D−). The last term on the right-hand side of (2.15) represents the
diffusion corresponding to liquid tracer diffusivities in a sheared suspension of par-
ticles. As desribed by Wang, Mauri & Acrivos (1996), these follow the same scaling
as the shear-induced particle diffusivities of a suspension. They found, from theoret-
ical considerations of dilute suspensions, the non-dimensional liquid tracer diffusion
coefficient, βs, within the plane of shear to be

βs(α) = 0.12α2, (2.16)

which we shall use here as the basis for a conceptual model of the ionic mass transport
induced by the random motion of the bubbles.

In principle, D+ and D− are functions of the solvent concentrations but are
here, for the dilute electrolyte considered, taken as empirically determined constants.
Conservation of the ionic species then requires

∇ ·N = 0, ∇ · i = 0. (2.17a,b)

Separate boundary conditions at the electrode for the two normal components of
the ion flux densities are formulated. Since the positive ions do not take part in the
chemical reaction at the electrode surface they are neither consumed or produced
there, so that N+ · ŷ = 0. The negative hydroxide ions are produced at the surface,
carrying all the charge transport from the surface, i.e. −FN− · ŷ = −i(z), where i(z)
is the, as yet undefined, distribution function for the current density at the electrode
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surface. It then follows, together with the definition of the combined flux density, that

N · ŷ =
i(z)

F

D+

D+ + D−
, i · ŷ = −i(z). (2.18a,b)

The behaviour of the current density at large distances from the electrode generally
requires more specific conditions of the surroundings, which is not necessary here as
will be seen when we proceed with the boundary layer analysis in § 3.

To complete the formulation we need a relation between the electric potential at the
electrode and the current density as determined by electrode kinetics. For a sufficiently
large cathodic polarization, such that |(F/RT )η| � 1 where the overpotential η < 0,
the net current density is approximated by

iy = −io(1− αl) exp

(
− F

2RT η
)
, (2.19)

Vetter (1967, p. 535). Without loss of generality the cathodic overpotential can be set
equal to minus the electrolyte potential evaluated adjacent to the electrode surface,
η = −Φl . In (2.19) io is the so-called apparent exchange current density, the value
of which is not essential in what follows. The factor (1− αl) is introduced here, as a
not unresonable approximation, to account for the reduction of the active electrode
area caused by bubbles adhering to the electrode. This reduction is thus assumed to
be directly proportional to the local void fraction at the electrode, αl . An alternative
would be to use some empirical relationship for this reduction which, to the present
knowledge of the author, does not exist. A problem for the complete cell can be
formulated either in terms of a specified cell overvoltage or a specified total current,
where in the latter case the cell overvoltage appears as part of the solution. In our
case, with a single electrode, only the current can be specified and the cell overvoltage
will remain indeterminate. With an average current density im over the electrode,
(2.19) may be expressed

iy(z) = −im
(1− αl(z)) exp

(
F

2RT φl(z)
)

1

L

∫ L

0

(1− αl(z)) exp

(
F

2RT φl(z)
)

dz

≡ −i(z), (2.20)

where φl = Φl − Φ0 is the part of the electrolyte potential corresponding to the
deviation of the current density on the electrode from its average value. Φ0 is a
constant satisfying

io exp

(
F

2RT Φ0

)
1

L

∫ L

0

(1− αl(z)) exp

(
F

2RT φl(z)
)

dz = im. (2.21)

As such, Φ0 is an uninteresting quantity, as far as the mass transfer is concerned,
and the problem may be formulated in terms of φl alone, where (2.20) serves as a
basis for the boundary conditions of ionic species flux densities in the electrolyte as
discussed previously in this section. Equation (2.20) also sets the magnitude of the
gas-evolution rate through (2.9).

2.3. Non-dimensional parameters

Non-dimensional variables, without change of notation, are introduced using L, jH2m
,

ρC , µC , ρCgL as typical values of length, velocity, density, viscosity and pressure, where
L is the length of the electrode, and c0, c0jH2m, im and imL/σ0

C for ion concentration,
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ion molar flux density, current density and electric potential, respectively. The non-
dimensional parameters are

ΛL =
gL2

νCjH2m

, Λa =
ga2

νCjH2m

, ReL =
jH2m

L

νC
, (2.22)

where νC is the kinematic viscosity of the continuous phase, and

PeL =
jH2mL

D̄
, ∆D =

D+ − D−
D+ + D−

, X0 =
c0RT
pH2

, (2.23)

where D̄ = (D+ + D−)/2. With this scaling of variables, ΛL is the ratio of buoyancy
and viscous forces and Λa = 3Us/jH2m

is the ratio of the modified Stokes velocity
and the gas injection velocity. In the boundary layer analysis, see § 3 below, Λa turns
out to be the relative measure for the shear-induced bubble flux magnitude in the
wall-normal direction.

3. Analysis
Values of ΛL and PeL are typically very large. For an average current density of

2000 A m−2, an electrode length of 0.5 m and a kinematic viscosity and molecular
diffusivity of 10−6 m2 s−1 and 10−9 m2 s−1 respectively, we obtain values in the order of
ΛL ∼ 1010 and Pe ∼ 105 and a Reynolds number ReL ∼ 102. This indicates that we
can expect characteristics of a boundary layer in the flow along the electrode. Thus,
there will be a thin bubble plume close to the electrode, decreasing the conductivity
of the electrolyte, but increasing the effective mass transport of ions in relation to
a pure electrolyte. A boundary layer analysis is presented next where we show that
if Λa is sufficiently large, mass transport due to the shear-induced diffusion will be
large enough to keep the ion concentration, in the greater part of the bubble plume,
at values close to that in the bulk.

If one disregards the ionic mass transport, which will play a passive role here,
mathematical and to some extent also physical analogies can be drawn with the
well-known problem of laminar natural convection along a heated plate. The bubble
plume is buoyant, like the heated fluid, but unlike the heated fluid the plume is also
a source of volume at the wall since the relative density differences in the plume are
much larger than usually considered for the heated fluid. ΛL � 1 plays the role of
a Grashof number and the Prandtl number would be νC/Usa � 1 measuring the
ratio of the diffusivities of momentum and hydrodynamic self-diffusion. This ratio,
however, plays a minor role for the plume since the dominating transport mechanism
of the bubbles are shear-induced diffusion and convection. Thus, a ratio for our
problem, with similar role to the Prandtl number for the heated plate, would be
νC/a

2γ̇, which will turn out to be fairly large in what follows. The structure of the
boundary layer for the plume is therefore expected to have some similarities with that
for a heated plate at large Prandtl numbers, such as a buoyant viscous inner layer
and an inertial, essentially non-buoyant outer layer.

3.1. Boundary layer approximations

The thickness of the hydrodynamic boundary layer, δ, may be estimated from an
assumed balance between buoyancy and viscous forces in the vertical component of
(2.8) through which δ2 ∼ w/ΛL. As, supposedly, v ∼ 1 it follows from continuity that

w ∼ 1/δ so that δ ∼ Λ
−1/3
L � 1. New boundary layer variables are then introduced
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according to

w̃ = wΛ
−1/3
L , ṽ = v, j̃z = jzΛ

−1/3
L , j̃y = jy, φ̃ = φΛ

1/3
L , ỹ = yΛ

1/3
L . (3.1a–f )

Introducing these new variables into the governing equations, through formally con-
sidering the limit

ΛL →∞, ReLΛ
−1/3
L ∼ 1, PeLΛ

−1/3
L ∼ 1, Λa ∼ 1, (3.2)

and neglecting all terms of order Λ
−1/3
L or smaller, shows that the vertical component

of the relative velocity may be neglected in comparison with the vertical advection of
particles. With the same order of accuracy we may set w̃ = j̃z whereas for the wall-
normal component we have ṽ = j̃y − j̃Ry/(1 − α) with j̃Ry/(1 − α) ∼ 1. The boundary

layer equations, retaining only terms of relative orders larger than Λ
−1/3
L , are

∂j̃z
∂z

+
∂j̃y

∂ỹ
= 0, (3.3)

∂

∂z
(αj̃z) +

∂

∂ỹ
(αj̃y) = Λa

∂

∂ỹ

(
β(α)

∣∣∣∣∂j̃z∂ỹ
∣∣∣∣ ∂α∂ỹ +

1

3

Λ
1/2
a

Λ
1/6
L

D⊥
∂α

∂ỹ

)
, (3.4)

Reδ

(
(1− α)j̃z ∂j̃z∂z + [(1− α)j̃y − j̃Ry]∂j̃z∂ỹ

)
= α+

∂

∂ỹ

(
µe(α)

∂j̃z
∂ỹ

)
, (3.5)

(1− α)j̃z ∂c∂z + [(1− α)j̃y − j̃Ry] ∂c∂ỹ
=

1− ∆D2

Peδ

∂

∂ỹ

(
g(α)

∂c

∂ỹ

)
+ Λa

∂

∂ỹ

(∣∣∣∣∂j̃z∂ỹ
∣∣∣∣ βs(α) ∂c∂ỹ

)
, (3.6)

where

j̃Ry = −Λa
(
β(α)

∣∣∣∣∂j̃z∂ỹ
∣∣∣∣ ∂α∂ỹ +

1

3

Λ
1/2
a

Λ
1/6
L

D⊥
∂α

∂ỹ

)
(3.7)

and

∂̃iy

∂ỹ
= 0, ĩy = −cg(α)

∂φ̃

∂ỹ
− ∆D

Peδ
X0g(α)

∂c

∂ỹ
, (3.8)

and where we have introduced

Reδ = ReLΛ
−1/3
L , Peδ = PeLΛ

−1/3
L . (3.9)

(One may infer that Reδ ∼ a2γ̇/νC and thereby has the role of an inverse Prandtl
number as discussed in the previous paragraph.) The boundary conditions at the
electrode are

j̃z(ỹ = 0) = 0, j̃y(ỹ = 0) =

(
j̃Ry

(1− α)
)
ỹ=0

= i(z), (3.10)

−
(

1− ∆D2

Peδ
g(α)

∂c

∂ỹ
+ Λa

∣∣∣∣∂j̃z∂ỹ
∣∣∣∣ βs(α) ∂c∂ỹ

)
ỹ=0

=
1 + ∆D

X0

i(z), (3.11)

ĩy(ỹ = 0) = −i(z), (3.12)
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where

i(z) =

(1− αl(z)) exp

(
Peδ
2X0

φ̃l(z)

)
∫ 1

0

(1− αl(z)) exp

(
Peδ
2X0

φ̃l(z)

)
dz

. (3.13)

Far away from the electrode

j̃z(ỹ →∞)→ 0, α(ỹ →∞)→ 0, c(ỹ →∞)→ 1. (3.14)

At the lower end of the electrode there is no oncoming flow and also no bubbles so
that

j̃z(z = 0) = 0, α(z = 0) = 0, c(z = 0) = 1. (3.15)

It follows from (3.8) and (3.12) that the horizontal component of the current density
is constant through the boundary layer and that far away from the electrode

ĩy = −∂φ̃
∂ỹ

= −i(z). (3.16)

We then introduce the ansatz

φ̃ = i(z)ỹ + φ̃′, (3.17)

where

φ̃′(ỹ →∞)→ 0. (3.18)

Substituting the ansatz (3.17) into (3.8) and integrating yields

φ̃l = φ̃′l = −∆D

Peδ
X0 ln cl − i(z)

∫ ∞
0

1− cg(α)

cg(α)
dỹ, (3.19)

where again the subscript l denotes evaluation in the liquid electrolyte at ỹ = 0. The
first term on the right-hand side of (3.19) is usually termed the diffusion overpotential.
The second term could be denoted the bubble overpotential, as it is caused by the
increase in reduced resistivity of the thickening boundary layer brought about by the
presence of the bubbles. Equation (3.19) is an implicit relation for φ̃l since i(z), by
(3.13), depends on φ̃l . Alternatively, by substituting (3.19) into (3.13) we obtain an
implicit relation for i(z).

We shall specify typical values of the non-dimensional parameters in order to
estimate the variation of ionic species concentration in the boundary layer. Consider
bubbles of radius a = 50 µm, an electrode of length L = 0.5 m, an electrolyte kinematic
viscosity ν = 10−6 m2 s−1, diffusivities of the ionic species D+ = 1.33 × 10−9 m2 s−1

and D− = 5.27 × 10−9 m2 s−1, corresponding to molar conductivities of 5.01 and
19.8 S m2 kg−1 mole respectively (see Atkinson 1972), a temperature of T = 300 K,
a gas pressure of pH2

= 105 Pa and an average current density of im = 2000 A m−2.
We then obtain Λa = 94.9,Reδ = 0.06,Peδ = 18.5, ΛL = 94.9 × 108 and with a bulk
concentration c0 = 0.4 kg mole m−3, X0 = 10. It then follows from (3.6), by comparing
the orders of magnitude of the two terms on the right-hand side, that the dominating
mass transport mechanism, relative to the continuous-phase transport, is that due
to shear-induced tracer diffusion in the bubble suspension. Under the assumption
that shear-induced diffusion is dominant in (3.4) also, j̃z ∼ Λaβj̃z/δ̃

3, where δ̃ is
an estimate of the boundary layer thickness in the scaled coordinate. Considering a
balance between buoyancy and viscous forces in (3.5) gives α ∼ j̃z/δ̃

2 and from the

boundary conditions (3.10), (3.11), we find Λaβj̃zα/δ̃
2 ∼ 1 and Λaβsj̃z∆c/δ̃

2 ∼ 1/X0
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where ∆c is the variation of the non-dimensional ionic species concentration in the
boundary layer. Then, for large Λa and with the estimates β ∼ βs ∼ α2, we get

α ∼ Λ−1/4
a , j̃z ∼ Λ1/12

a , δ̃ ∼ Λ1/6
a and ∆c ∼ Λ−1/4

a /X0. With typical values of Λa and X0

given above we obtain ∆c ∼ 0.03� 1. Therefore, here we shall neglect any deviations
of the ionic species concentration from that in the bulk, i.e. c is considered constant
and equal to one. Thereby, we have eliminated one of the dependent variables and
the coupling between hydrodynamics and mass transport is now only present through
the boundary condition (3.10) and the effective conductivity of the suspension, g(α).
For this reduced system of equations the Péclet number is encountered only through
(3.13) in the relation Γ = Peδ/X0. This can also be written

Γ =
imΛ

−1/3
L L/σ0

C

RT/F , (3.20)

which estimates the ratio of the potential drop in the boundary layer and the difference
in potential as the equivalent to thermal kinetic energy per unit charge.

The simplified formulation is a result of the supposed effectiveness of mass trans-
port, induced by the bubble suspension, in comparison to molecular diffusion. One
could argue though, that close to the wall, the random fluctuating motions of the
bubbles are restricted, and that for a certain distance from the wall, smaller than a
bubble diameter, the overall mass transport mechanism must be mainly molecular
diffusion. Considering the lower efficiency of this mechanism, the value of cl appearing
in (3.19) would therefore differ from one. In fact, such a wall region is discussed by
Koch (1996) for sheared suspensions of particles. Using his ideas, theoretical estimates
of cl yield significant deviations from one. On the other hand, in the case of bub-
bles evolving on an electrode there also exist other mass transfer mechanisms from
microconvection that are of importance close to the electrode surface. In particular
the effect of sliding bubbles at the wall, as reported by Janssen (1989), indicate that
mass transfer close to the wall in reality is more effective than that by pure molecular
diffusion. The presence of these effects, not modelled in detail here, may allow the
use of the present model all the way to the wall, where its validity may be somewhat
doubtful.

3.2. Numerical procedure

At a first glance, the system of boundary layer equations may seem to be of the
standard type, in that they can be solved by a suitable marching procedure from
known variable values at the lower edge of the electrode. However, one should
observe that, since (3.13) involves an integration of dependent variables along the full
length of the electrode, the system of equations is not strictly parabolic. The unknown
at the outset is the value of the current density at z = 0. There are no mechanisms
for bubbles to penetrate below the lower end of the electrode in the boundary layer
formulation, so that there can be no bubbles present at z = 0−. This means that
αl(z = 0) = 0 and from (3.19) where φ̃l(z = 0) = 0 with c = 1, we obtain from (3.13)

i(z = 0) =
1∫ 1

0

(1− αl(z)) exp

(
Γ

2
φ̃l(z)

)
dz

≡ io. (3.21)

Thus, the current density at the lower edge of the electrode depends on the full
solution along the electrode. However, if io was known initially, the problem would
be parabolic. This observation is used here to formulate an iteration procedure (see
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Figure 2. Gas volume fraction versus wall-normal coordinate at the vertical positions
z = 0.01, 0.05, 0.25, 0.5, 1.0 for Reδ = 0.06, Λa = 94.9, ΛL = 94.9× 108 and Γ = 2.

the Appendix), where an initial guess for io is successively updated through repeated
integration of the artificially constructed parabolic system.

4. Results and discussion
Here we present results for some typical values of the non-dimensional parameters

which can be thought of as representing two different bubble sizes and four different
bulk concentrations. Using values of the physical variables given in the end of § 3.1,
but for a bulk concentration c0 = 0.37 kg mole m−3, we obtain Reδ = 0.06, Λa =
94.9, ΛL = 94.9× 108 and Γ = 2. With half the bubble radius, a = 25 µm, we instead
get Λa = 23.7 but with all the other parameters unchanged. From its definition in
(2.22), Λa is three times the ratio of the rising speed of a single bubble to the gas
injection velocity. It also is an estimate of the ratio of the shear-induced flux of
bubbles, in the boundary layer formulation, to that which results from advection. For
the larger bubble radius, a = 50 µm, i.e. for Λa = 94.9, we also present results for
Γ = 1/2, 1 and 4 which could be obtained by e.g. varying the bulk concentration c0.
Γ approximates the relative magnitude of the electrical potential drop through the
boundary layer but for the conductivity in the abscence of bubbles.

In figure 2 the development along the electrode of the bubble volume fraction
profile is shown for the case of Λa = 94.9, Γ = 2. The injected gas spreads gradually
away from the electrode, keeping the volume fraction at the wall approximately
constant for the vertical positions shown in figure 2. The corresponding mixture
velocity profiles, as generated by the buoyant bubble layer, are shown in figure 3. As
the Reynolds number is fairly low, Reδ = 0.06, an inertial layer, free from bubbles, is
apparent outside the bubbly region of the velocity profiles.

The development along the electrode of the gas volume fraction at the wall, the
maximum of the velocity profile and the distance from the electrode of this maximum,
are shown in figure 4 for Λa = 94.9 and various values of Γ . As can be observed, the
volume fraction appears fairly constant and essentially independent of Γ except for
a region close to the lower end of the electrode. Away from the lower end, the scaling
of the velocity and the boundary layer thickness also appear relevant and more or
less independent of Γ .

Current density distributions for Λa = 94.9 and various values of Γ are shown in
figure 5. Starting at the lower end, the current density first shows a rapid decrease and
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Figure 3. Vertical component of mixture velocity versus wall-normal coordinate at the vertical
positions z = 0.01, 0.05, 0.25, 0.5, 1.0 for Reδ = 0.06, Λa = 94.9, ΛL = 94.9× 108 and Γ = 2.
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Figure 4. Gas volume fraction at the electrode, αl , scaled maximum of the vertical mixture velocity
profile, z−1/2[j̃z]max , and scaled distance from the wall of the maximum velocity, z̃−1/4δ̃max , versus
the vertical coordinate for the same parameters as in figures 2 and 3 and with Γ = 0.5, 1, 2, 4.

then levels out to a smaller slope on the major part of the electrode. This decaying
behaviour reflects the increased resistivity of the thickening bubble boundary layer
along the electrode. For increasing values of Γ , the current density at z = 0, io,
increases as shown in table 1. Thus, increasing Γ gives a more uneven current
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Figure 5. Current density distribution, i(z), along the electrode for the same parameters as in
figures 2 and 3 and with Γ = 0.5, 1, 2, 4.

Λa 94.9 23.7

Γ 0.5 1 2 4 2
io 2.77 4.95 15.9 168 124

Table 1. Current density at the lower end of the electrode, io, for various values of Λa and Γ and
with ΛL = 94.9× 108 and Reδ = 0.06.

distribution. For large Γ a limit current distribution, i(z) = 0.75z−1/4, is approached
which is also shown in figure 5. (One may see from the formulation in the Appendix
that this limit, Γ →∞, corresponds to a similarity solution of the governing equations
such that io →∞ which, if (A 3) is disregarded, mathematically is analogous to laminar
natural convection along a heated plate.)

Bubble overpotential distributions, φ̃l(z), corresponding to the current distributions
presented are shown in figure 6. The negative values represent a loss in catodic
polarization as a result of the increased resistivity caused by the bubbles. This must
of course be compensated for by the constant part of the total overpotential, Φ0,
defined in (2.21). For the smallest value of Γ shown, i.e. for a comparatively small
relative potential drop, the bubble overpotential distribution is continuously changing
along the electrode. For the largest value of Γ , φ̃l takes an almost constant negative
value along the electrode, except for a small region close to the edge. Apparently,
as Γ and thus the potential drop are large, the effective non-dimensional bubble
overpotential, Γφ̃l , as it appears in the exponent of (3.13), requires only a small
relative variation of φ̃l to change the current density at the electrode.

For the case of smaller bubbles, Λa = 23.7, the mechanism of shear-induced
diffusion of bubbles is weaker. As can be observed in figure 7, the bubbles do not
spread so far from the electrode as in the case of larger bubbles shown in figure
2. The more narrow bubble layer also results in a higher gas volume fraction. (One
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Figure 6. Bubble overpotential, φ̃l , versus the vertical coordinate for the same parameters as in
figures 2 and 3 and with Γ = 0.5, 1, 2, 4.
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Figure 7. Gas volume fraction versus wall-normal coordinate at the vertical positions
z = 0.01, 0.05, 0.25, 0.5, 1.0 for Reδ = 0.06, Λa = 23.7, ΛL = 94.9× 108 and Γ = 2.

should bear in mind here the qualitative nature of these results. Incorporation of
other dipersion mechanisms in the model may well change the gas volume fraction
levels.) The mixture velocity, shown in figure 8, is of the same order of magnitude
as for the larger bubbles, but with the maximum of the profile shifted towards the
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Figure 8. Vertical component of mixture velocity versus wall-normal coordinate at the vertical
positions z = 0.01, 0.05, 0.25, 0.5, 1.0 for Reδ = 0.06, Λa = 23.7, ΛL = 94.9× 108 and Γ = 2.
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Figure 9. Current density distribution, i(z), along the electrode for the cases Λa = 23.7 and
Λa = 94.9 with Reδ = 0.06, ΛL = 94.9× 108 and Γ = 2.

electrode. Using the estimates given in § 3.1 for the variables suggest that α, δ̃ and
j̃z of the present case for Λa = 23.7 may be obtained by scaling those variables for
the previous case, Λa = 94.9, by a factor 1.4, 0.8 and 0.9, respectively. Comparing
maximum values of α and j̃z and the position of the steepest slope of the volume
fraction profiles of the two cases seem to confirm these scaling laws. As the Reynolds
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Figure 10. Current density distribution, i(z), for the experimental results of Hine & Murakami
(1980) in an electrolytic cell with natural circulation; measured and curve fits. Γ = 0.2, 0.5, 1.
(Reproduction by computeraided scanning and copying from printed source.)

number has not changed, Reδ = 0.06, the thickness of the inertial, bubble-free, outer
part of the boundary layer is roughly the same. The development along the electrode
of the gas volume fraction at the wall, the maximum of the velocity profile and the
distance from the electrode of the maximum are not shown, but are qualitatively
similar to the case in figure 4 for Λa = 94.9.

The current density distribution along the electrode for the cases of Λa = 23.7 and
Λa = 94.9 are compared in figure 9, which shows that there is hardly any visible
difference between them. Table 1 reveals that the former case has an initial value
of the current density at the lower end which is about ten times that of the latter.
However, this is not apparent from the graph, which essentially demonstrates that
the current distribution, at large, is insensitive to the bubble size.

Finally, we make a comparison of our results with the experimental results of
Hine & Murakami (1980) for an electrolytic cell with natural circulation. Measured
current densities and fitted curves, as reproduced from the printed source, are shown
in figure 10. The values of Γ in their experiment, Γ = 0.2, 0.5, 1, are approximate as
calculated from the reported currents used and our estimation of the conductivity of
their electrolyte. Values of Λa (and Reδ) are not available but seem less essential for a
comparison as is apparent from our results (see figure 9). The qualitative agreement
with our computational results in figure 5 is good and a quantitative comparison is
surprisingly fair, considering the fact that we model only a single electrode. A direct
comparison with the present theory for the case Γ = 1 is presented in figure 11. In
the same figure we also show previous models by Tobias (1959) and Rousar (1969).
The model parameter in the former case is that suggested by Hine & Murakami
(1980) to fit their data best. In the latter case the model parameter is computed
from experimental data as suggested by Vogt (1983), who slightly simplified Rousar’s
model. The present model definitely seems to agree best with the experimental data.
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Figure 11. Current density distribution, i(z), for Γ = 1. Circles: experiment of Hine & Mu-
rakami (1980); —–: present model; −−: model of Tobias (1959), i(z) = 8(K + 2)2/(K + 4)(2 +Kz)3,

K = 0.6; − · −· : model of Rousar (1969), i(z) = (1 + C)/(4z(1 + C) + C2)1/2, C = 5.
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ment of Hine & Murakami (1980); —–: present scaling law, jz ∼ i2/3m ; - - -: scaling law of Hine &

Murakami (1980), jz ∼ i1/2m .

A comparison of the estimated thickness of their velocity boundary layer from our
analysis, δ ∼ 7 mm (at the end of the 890 mm long channel), with the channel width,
19 mm, indicates that the channel flow might partly be that of two non-merged
boundary layers. One should bear in mind though, that our computational results
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lack not only the more restricted flow domain of the experiment, but also the bubbles
and corresponding boundary layer at the counter-electrode. Still, our model seems to
capture the essentials of a description of the current distribution. Figure 12 shows the
measured average flow velocity at the bottom of the cell versus the average current
density at the electrodes and, for comparison, two different scaling laws of the velocity.

Hine & Murakami (1980) proposed that the dimensional velocity jz ∼ i
1/2
m whereas

our model, for a single electrode, suggests jz ∼ i
2/3
m . The agreement of the present

scaling with the experimental results is fair, but not better than that suggested by
Hine & Murakami (1980).

5. Conclusions
We considered the modelling of two-phase flow adjacent to a single, vertical, gas-

evolving electrode at large catodic polarization in a binary electrolyte. The rate of gas
evolution was coupled to the electrochemistry through Faraday’s law and through
the charge transfer rate at the electrode surface, which is a strong nonlinear function
of the overpotential at the liquid–electrode interface. A buoyant boundary layer of
thickness δ ∼ L(νCjH2m

/gL2)1/3 was predicted by the model, which treated the bubble–
liquid mixture as a monodisperse suspension of light particles. Existing empirical
models for shear-induced diffusion and hydrodynamic self-diffusion of particles were
employed to describe the dispersal of bubbles through the liquid. The presence of
a shear-induced hydrodynamic gradient diffusion of the ionic species indicated a
drastically enhanced mass transport in comparison to molecular diffusion. This gives
rise to the proposal that only small relative variations in the species concentration,

∆c

c0

∼
(
νCjH2m

ga2

)1/4
pH2

c0RT ,
occur.

The predicted current density was shown to be approximately constant throughout
the boundary layer but strongly non-uniform along the electrode. The decreased
conductivity of the electrolyte in the thickening bubble layer concentrated the current
density, and thereby the generation of gas, at the lower end of the electrode. The
ratio ga2/νCjH2m

estimates the ratio of the shear-induced flux of bubbles to that which
results from advection by the gas injection velocity. The current density distribution
was essentially insensitive to this parameter although the thickness of the bubble
plume decreased for smaller values of it. This suggests that more elaborate models for
the bubble transport mechanisms may not be critical for the description of current
density distribution. On the other hand, larger values of (imδ/σ

0

C
)/(RT/F), which

measures the relative potential drop in the boundary layer, tended to increase the
non-uniformity of the current density.

Although the model presented lacks completeness in the detailed physical descrip-
tion of the bubble and ionic species transport mechanisms, it does account for some of
the fundamental physical phenomena of a gas-evolving electrode in laminar flow con-
ditions. The predicted current density distributions along the electrode indeed show
good agreement with experimental results from the literature. The results also serve
to demonstrate a good ability of our method to numerically handle the somewhat
unusual and strongly nonlinear boundary condition that appears from the electrode
kinetics. The results give encouragement for any future studies of a complete narrow
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electrolytic cell, and possibly including a more complete set of bubble dispersion
mechanisms in the model and accounting for the ionic species variations.

Appendix. Iteration procedure
To formulate the iteration procedure for the numerical solution of the boundary

layer equations we first introduce streched coordinates:

η = ỹ/z1/4, ζ = zi4o. (A 1a, b)

The wall-normal coordinate is introduced in analogy with the case of natural laminar
convection along a heated plate. Secondly, by defining the normalized current density
distribution,

I(z) =
i(z)

io
, (A 2)

elimination of φ̃l between (3.19) and (3.13) and using the new variables yields

I(ζ) = (1− αl(ζ)) exp

(
−Γ

2
I(ζ)ζ1/4k(ζ)

)
, (A 3)

where

k(ζ) =

∫ ∞
0

1− g(α(ζ, η))

g(α(ζ, η))
dη, (A 4)

and where io, by (3.21), satisfies

io = i4o

/∫ i4o

0

I(ζ) dζ. (A 5)

The non-dimensional electric potential in these variables is φ̃l = −I(ζ)ζ1/4k(ζ). A
stream function,

Ψ = z3/4F(ζ, η), (A 6)

is introduced, where F(ζ, η) is the scaled boundary layer stream function. The velocity
components are

j̃z =
∂Ψ

∂ỹ
=
ζ1/2

i2o

∂F(ζ, η)

∂η
, (A 7)

j̃y = −∂Ψ
∂z

= io

[
− ∂

∂ζ
(ζ3/4F(ζ, η)) +

ζ−1/4

4
η
∂F(ζ, η)

∂η

]
. (A 8)

The boundary layer equations, (3.4), (3.5), formulated with the new variables and with
partial derivatives denoted by subscripts ζ and η respectively, are then

ζαζFη − ζFζαη − 3
4
αηF = Λa

(
ζ1/4

io
β(α)|Fηη|αη +

1

3

Λ1/2
a

Λ
1/6
L

D⊥αη

)
η

, (A 9)

Reδ(1− α) (ζFηζFη − ζFζFηη + 1
2
F2
η − 3

4
FηηF

)
+ReδFηηΛa

(
ζ1/4

io
β(α)|Fηη|αη +

1

3

Λ1/2
a

Λ
1/6
L

D⊥αη

)
= α+ (µ(α)Fηη)η. (A 10)
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The boundary conditions at the electrode, (3.10), are

Fη(η = 0) = 0, F(η = 0) = −ζ−3/4

∫ ζ

0

I(ζ ′) dζ ′, (A 11)

−Λa
(
ζ1/4

io
β(α) |Fηη| αη +

1

3

Λ1/2
a

Λ
1/6
L

D⊥αη

)
η=0

= ζ1/4I(ζ)(1− αl), (A 12)

where the second expression in (A 11) is obtained from (3.10) and (A 8) by formal
integration, and I(ζ) is given implicitly by (A 3). Far away from the electrode

Fη(η →∞)→ 0, α(η →∞)→ 0. (A 13)

Now, with an initial guess, ioldo say, and since I(0) = 1, (A 9), (A 10), (A 11), (A 12)
and (A 3) can be integrated numerically from the lower end of the plate. The marching
is continued until the end of the plate at z = 1, which corresponds to ζ = i4o. The

latter relation will be used to define a new guess inewo = ζ
1/4
max, where ζmax is obtained

from ∫ ζmax

0

I(ζ) dζ = ζ3/4
max, (A 14)

which follows directly from (A 5) and the definition of ζmax. Thus, the integration
along the plate is continued for each iteration sweep until (A 14) is satisfied for some
value of ζ > 0. The procedure is then repeated until convergence is achieved.

The numerical integration of the boundary layer equations, with specified ioldo in
(A 9), (A 10) and (A 12), is based on a finite difference scheme proposed by Harris &
Blanchard (1982). The discretization is progressively made in the direction along the
electrode so that ζn+1/ζn = constant, where n is a mesh index starting at the lower end.
Finite difference discretizations of the various terms of the equations follow closely
those given by Harris & Blanchard (1982) and are not given here. A non-standard
feature, though, is the implicit algebraic relation (A 3) which determines I(ζn+1) in
each integration step. For this, a nested Newton–Raphson iteration procedure was
implemented in each step. Let I, as proposed by (A 3), be the solution to

I = (1− α̃l(ζn+1)) exp

(
−Γ

2
Iζ1/4

n+1k̃n+1

)
, (A 15)

where

k̃n+1 =

∫ ∞
0

1− g(α̃(ζn+1))

g(α̃(ζn+1))
dη, (A 16)

and, disregarding (A 3), α̃(ζn+1) is obtained from the solution of integration step
n + 1 with any specified value of the normalized current density, Ĩ(ζn+1) say, in
the boundary conditions (A 11) and (A 12). The Newton–Raphson method is then
formulated to find the zero ofF = Ĩ(ζn+1)−I[Ĩ(ζn+1)], whereby each integration step
is repeated iteratively until F = 0. In turn, each Newton–Raphson iteration requires
the solution of (A 15) for I, which is conveniently obtained by an additional, inner
Newton–Raphson loop.

An approximate similarity solution is available for small values of ζ, which is used
to start the numerical integration of the full solution. This is presented elsewhere,
Dahlkild (2000), together with a physical description and mathematical formulation
for the very early stages of the developing boundary layer.
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